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Polarized Light and Its Interaction With Modulating Devices 

Introduction 

My first purpose here is to give a simple methodology for characterizing and analyzing 
polarized light. The main method will involve merely vectors, to represent the transverse 
electric fields -- generalized to the powerful method of complex vectors. Except for one 
illustration, I will avoid matrix methods (Jones, Mueller matrices), which are used in many texts 
and articles but which are unnecessarily cumbersome for many problems. A second purpose is 
to give a general description of polarized light, both coherent (monochromatic) and incoherent, 
and to describe a couple of useful theorems. Here I define the Stokes parameters, and show their 
relationship to the vector fields. 

With this background I will discuss polarization modulators -- particularly so-
called birefringence modulators -- and their use in measuring and transforming polarized light. A 
couple of examples using the HINDS International PEM™ (photoelastic modulators) will be 
covered in detail. In order to illustrate the power of the PEM-based approach, a last topic will be 
an interesting application of modulator techniques to a special problem, that of shifting a light 
beam's frequency. 

A. Monochromatic polarized beam: Complex vector representation. 
A single-frequency beam, with angular frequency λπ=πν=ω c22 , is shown in Fig. 1 

(a). In a transverse stationary plane xy, the electric (E) vector generally describes an ellipse in 
time -- the wave is elliptically polarized. A compact way to describe this is by 
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using a complex vector E(t): 

E(t) = (ai + bj) e-iωt         (1) 

where i,j are unit vectors along x, y ; and a, b are complex numbers. We write a = a1 + ia2 and b 
= bl + ib2 where ala2blb2 are all real numbers. Now, in the complex vector formalism we define 
the real or "physical" electric field as the real part of E: 

E(phys) = Re{E} = i(a1 cos ωt + a2 sin ωt) + j(b1 cos ωt + b2 sin ωt)  (2) 

Using electric phase angles φ x = arctan (a2/al) and φ y = (b2/b1 ), this can also be written: 

E(phys) = i |a| cos(ωt + φ x) + j |b| cos(ωt + φ y)     (2’) 

where 2
2

2
1 aaa +=  and 2

2
2

1 bbb += . 

 

Examples: A circularly polarized wave rotating counterclockwise is: 

E = (i + ij) e-iωt         (3) 

 
for which E(phys) = i cos ωt + j sin ωt 
 
 
A linearly polarized wave at 45° orientation is merely: 
 

E = (i + j) e-iωt,  where E(phys) = (i + j) cos ωt.    (4) 

 
Why use these "complex vectors"? Because it greatly economizes on the algebra we need 

to describe polarized light as it interacts with optical devices. In (1) we need only to keep track 
of the two (complex) numbers a, b . The time variation factor exp(-iωt) is always merely a 
common factor which rides along through all the calculations. In the latter we can often omit this 
time factor and put it back in only at the end of the calculation, when 
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we need the physically measurable fields. By contrast, if we work only with the physical field 
(2), we must carry along the four quantities (ala2blb2) as well as the separate cosine and sine time 
factors. (Alternatively if we work with the form (2') we must carry along the awkward phases 
φ x,φ y, which change as the light passes through a device.) 

Note that the intensity of the wave is given by: 

 ( ) ( )222 2121I baphys +=⋅== ∗ΕΕΕΕΕΕΕΕΕΕΕΕ  

where the bar means averaging over one (or many) optical cycles. The factor 1/2 comes 

from 21tsintcos 22 =ω=ω . Since we usually care only about ratios of intensities, for brevity I 
will drop the 1/2 here and define I = E•E*. 

B. Stokes parameters. 
The polarized nature of a light beam 

can normally be ascertained only by 
measuring the relative intensities of the beam 
after it is passed through certain devices, such 
as polarizing prisms or films, and wave plates. 
A standard set of such measures gives the four 
so-called Stokes parameters: 

I = total intensity of incident beam.  

Q = Ix - Iy 

U = Ix′ – Iy′ 

V = I+ - I_ 

 

 
 

FIG. 2 
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For Q, we measure the intensity of the beam transmitted through a linear polarizer with passing 
axis along x; secondly with the polarizer axis along y. Q is the difference between these fluxes. 
For U, we do the same thing but with the passing axes first along the + 45º x' axis, then along the 
- 45º axis (y'). For V, which measures the circular polarization in the beam, we use two "circular 
polarizers", which transmit only left-rotating (positive) and right-rotating (negative) circularly 
polarized components respectively; V is the difference between these two transmitted intensities, 
measured alternately. (Here a "circular polarizer' is normally a sandwich of a quarter-wave plate 
followed by a linear polarizer with passing axis at 45º relative to the wave-plate fast axis.) 

That the fourfold set I,Q,U,V is at least necessary to define the polarization is obvious. 
Could we dispense with the second "linear" parameter, U? No, because the beam could be 
linearly polarized along one of the ±45º axes (x'y'); the Q measurement would be neutral to this, 
yielding Q = 0, while the beam is indeed polarized. 

Let us calculate the Stokes parameters for the (elliptically polarized) wave Ε of eq. (1). 
We can omit the exp(-iωt) time factor since it doesn't affect the intensities. We have: 

2
2

2
1

2
2

1
1

22 bbaabaI +++=+=       (5) 

and 

2
2

2
1

2
2

2
1

22 bbaabaQ −−+=−=       (6) 

For U, we use the projections of E along the ± 45º axes x'y', defined by unit vectors: 

( ) 2jii ' +=       and      ( ) 2ji-j +=′  

Thus ( ) 2xE ba +=′  and ( ) 2yE ba +−=′  

and 

U = |Ex’|2 - |Ey’|2 = ab* + a*b = 2(a1b1 + a2b2)    (7) 

For the circular parameter V, note, that an arbitrary E of type (1) can always be written as a sum 
of two purely circular E fields of types: 

( ) 2ijie +=+  ( ) 2i_ j-ie =      (8) 
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To show this we write 

( ) ( ) 2iB2iA jijijiE −++=+= ba      (9) 

where A and B are two complex constants to be determines. Equating i and j coefficients we get: 

( ) 2BA +=a  and ( ) 2B-Ai=b  

yielding ( ) 2iA b-a= and ( ) 2iB ba += . By definition here, V is the difference in 
intensities between the A and B circular amplitudes: 

( ) ( )1221
22 2iBAV babab*-a*ab −==−=     (10) 

Summarizing (5), (6), (7) and (10) we have: 

I2
2

2
1

2
2

2
1 =+++ bbaa  

Q2
2

2
1

2
2

2
1 =−−+ bbaa  

2(a1b1 + a2b2 ) = U 

2(a1b2 – a2b1) = V         (11) 

Now, given the measured values IQUV, these equations form a simultaneous set which can be 
solved for the real E-field amplitudes a1b1a2b2. The solution is unique, except for certain signs: 
eqs. (11) being quadratic, we can for example change all the signs of the a's and b's and get an 
equally correct solution. This merely means that our intensity measures cannot tell E from -E. 
More generally there is an undetermined optical phase. Apart from such phase (and sign) 
uncertainty, however, eqs. (11) suggest that the four Stokes parameters are sufficient to define 
the light beam's polarized character, insofar as we can determine this from intensity 
measurements through polarizers and wave plates. 
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C. A Word on Jones and Mueller Matrices. 

These are two other mathematical formalisms for dealing with polarized light and its 
interaction with devices. (A reference is Hecht and Zajac, Qptics, Addison-Wesley Publ. Co., 
1979, pp;. 268-271.) Actually, the Jones method is essentially the one I use in this exposition, 
except for a different notation. In the Jones notation, our complex vector of type     E = ai + bj is 
written as a column matrix: 







=

b
a

E  

Any optical device acting on E is then represented by a 2x2 matrix which multiplies (transforms) 
the column vector E. 

In the Mueller method, one works not with the (complex) E vector but directly with the 
Stokes parameters, which are represented by a column matrix or "vector": 
















→

V
U
Q
I

E  

A device acting on E, then corresponds to a 4x4 matrix (the Mueller matrix) which multiplies 
(transforms) the column Stokes vector. 

Since there are no fundamental advantages in either of these methods, I will use instead 
merely our complex vectors, except for one example at the end of this treatise. 

D. Polychromatic, incoherent, or partially coherent light: A key theorem. 
 
 
 
 
 
 
 
 
 

      FIG. 3          FIG. 4 
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Suppose we have a distribution of monochromatic light components (E vectors) spread over a 
band of frequency width Γ: 

( )e ti
N

i
ii iω−+= ∑ jiE ba        (12) 

Since the different frequency components do not interact (in time averages), we can calculate 
Stokes parameters of E quite simply; for example 

∑ 


 +=
i

2
i

2
iI ba and so on for Q,U,V. 

Now pass the beam E through an arbitrary, linear optical device D. Each frequency component 
Ei = aii + bij will undergo a linear transformation of the x ,y components as follows: 

( )jii β+α→ ii aa  

( )jii δ+γ→ ii bb         (13) 

where α, β, γ, δ are (complex) constants of the device. They cause attenuation, dichroism, phase 
shifts, etc. We assume only that the α, β, γ, δ are frequency-independent over the bandwidth Γ. 

Now consider a second incident beam, 

( )∑
ω

+=
j

i-
ejBjA

tjjiF  

which happens to have the same Stokes parameters as E, although perhaps a different detailed 
structure. 

After passage through D, the two beams would be transformed by (13): 

EE ′→  and FF ′→ . 

Now the question is: Are the Stokes parameters of E' and F' still equal? Straightforward 
calculation of the transformed parameters uses (5), (6), (7) and (10), applied to: 
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e ti

i
ii iω−


 ′+′=′ ∑ jiE ba  

where the D-transformed amplitudes ai' and bi' are given, in light of (13), by 

γ+α=′ iii baa  and δ+β=′ iii bab  

Analogous expressions apply for the alternate field F and its D-transformed amplitudes Ai' and 
Bi'. We thus compute expressions for the D-transformed Stokes parameters IE', QE', UE', VE', and 
IF', QF', UF', VF', in terms of the incident-beam amplitudes ai, bi and Ai, Bi. Using the initial 
assumption that 

IE = IF, QE = QF, UE = UF, VE = VF, 

it can then be shown -- with a bit of algebra -- that IE' = IF ', QE '  = QF ', UE ' = UF ',  
VF ' = VF '. I leave the detailed algebra to the reader. This result has two important corollaries: 

(a) No optical device D can distinguish between different beams in the band having the 
same Stokes parameters. (Wavelength-dependent devices are excluded.) 

(b) Any beam can be represented by an unpolarized component (Q=U=V=O), plus a 
single monochromatic, coherent, polarized wave of type 

( ) ti-eba ω+= jiE . 

The ratio between the intensity 2E of this polarized component, and the total intensity, is the 
"fractional polarization" of the beam. 

E. Partial linear polarization. Consider a beam with E field 

E = E0+ El 

where E0 is an unpolarized part and El is  
linearly polarized along the direction θ, as 
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in Fig. 5. The unpolarized part E0 in Fig. 5 is 
represented schematically by a random array of 
vector fields of different frequencies, directions, 
phases, etc. In this case we can write 

( ) ti
e sin  cos1E1 1ω−

θ+θ=  j  iE , 

where we can take the amplitude E1 to be real. 
Clearly: 

2
1E2

0EI +=  

and 

( )θ=


 θ−θ= 2cos2
1E2sin2cos2

1EQ . 

 
To find U we project El onto the ± 45° axes: 

( ) ( ) ( ) ( )
2

sin    cos
2

12
sin   cos 

2
12

1EU θ+θ⋅+−−θ+θ⋅+= j ijijiji  

( )θ= 2sin2
1E  

The total linearly polarized intensity (flux) is defined as Q2 + U2 = E1
2. This would be merely the 

Stokes parameter Q″ which we would measure if we used not the xy axes, but axes x"y" where x" 
is along the vector E1. The fractional linear polarization is defined by: 

2
1E2

0E

2
1E

I

2U2Q
p

+
=

+
=  

 
and we can write 

Q = I p cos (2θ) and U = I p sin (2θ)      (14) 

Describing a partially linearly polarized beam by the three parameters (I, p, θ), rather than 
(I,Q,U), is often useful. 

y 
 y” 

 

x” 
 

x 
 

θ 
 

E0 

 

FIG. 5 
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Rotated axes. Suppose we want the linear 
Stokes parameters referred not to x,y but to some arbitrarily rotated axes x',y' as in Fig. 6. Simply: 

Q' = Ip cos[2(θ - α)] 

U' = Ip sin[2(θ - α)].  

 
 
 
 
 
 
 

FIG. 6 
 

Expanding the cos, sin functions and using (14) we get an important linear transformation: 
 

Q' = Q cos(2 α) + U sin (2 α) 

U' = - Q sin (2 α) + U cos (2 α)      (15) 

F. Measuring and modulating polarized light with birefringence modulators. 

We refer to devices which involve time-varying birefringence: The two transverse 
refractive indices nx ,ny vary in time, and more specifically the birefringence nx -ny  
varies. This causes a varying optical phase shift ∆φ  between the transmitted wave components 
Ex and Ey: 

( ) ( ) ( )tfd2d2t
λ
π=−

λ
π=φ∆ ynxn  

where d is the device thickness and λ is the light wavelength. Such devices include photoelastic 
modulators (PEMs) and Pockels cells. In many applications the modulating 

x' 
 α 

 

θ 
 

θ' 
 

y 
 y' 
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E1 
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FIG. 7 

 
function f(t) = nx - ny has zero time average, and is a periodic function. In the case of Pockels 
cells, the modulating function may be arbitrary; squarewave modulation, for example, is often 
used. PEMs, however, are resonant devices and f(t) is sinusoidal. We will treat cases of PEM 
modulation. 

In Fig. 7 is shown a general set-up for measuring the polarization of light, using a 
photoelastic modulator -- PEM. The incident beam has a polarized component with the general 
form 

E = (ai + bj)  (omitting the e-iωt factor) 

which is elliptically polarized, with a,b complex. This can represent a completely polarized beam 
or merely the polarized part of a partly polarized, partly coherent beam as described in Secs. D 
and E above. The unpolarized part would not be modulated by the PEM. The wave E' after the 
PEM can be written: 

2Ai-e2Aie  j iE  b a +=′  

where A = A0 cos Ωt = ∆φ (t); A0 is the retardation amplitude, which is determined by the 
excitation level of the PEM. The wave E" after the Polaroid in Fig. 7, which has its passing axis 
at 45°, is gotten by projecting E' onto the 45° (x') axis using the unit vector along that axis: 

( ) ( )jiEjiE +′⋅+=′′
2

1
2

1  

and the output intensity is: 

22Ai-e2Aie
2
1I  b a +=′′        (16) 
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Take the case ( ) 21- and 21 i.e. ,2 === baj-iE , an incident beam linearly polarized 
along -45°. This gives: 

( ) ( ) 2A cos1A2sin2Asin  i2
4
1I 22 −===′′  

( )[ ] 2t cos 0Acos1 Ω−=        (17) 

We can learn something about the intensity function (17) by supposing A0 to be small, and 
expanding the cosine function. Thus if A0 << 1, we find: 

( )[ ]t2cos 182
0AI Ω−


≅′′        (18) 

This modulation is second harmonic, at angular frequency 2Ω. (The PEM modulation period is T 
= 2π/Ω.) For values of A0 not small, the waveforms of I" look as in Fig. 8 at below. In the 
waveform 2 we have A0 = π/2, "half wave" retardation amplitude. The general expansion of eq. 
(17) involves Bessel-function coefficients: 

( ) ( ) ( ) ( ) ( )[ ] 2.......t4cos0A4J2t2cos0A2J20A0J1I +Ω−Ω+−=′′  (19) 

 
 
 
 
 
 
 
 

FIG. 8 
 
 
Usually the second harmonic is used for synchronous detection of the linearly polarized 
flux here. In (19), J2 has a maximum of 0.486 with A0 = 3.1, or approximately π = 3.14 (half 
wave retardation). 

Partial polarization, calibration. Suppose in the above case the initial beam is partly 
polarized, with an unpolarized intensity I0 and a polarized part of intensity I = E2. The total 
intensity is It = I0 + I. How do we find the fractional polarization p = I/It from the synchronous 
second-harmonic signal? In this case the signal received would be: 

( ) ( )t2cos0A2J IS Ω=  
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We can calibrate this signal by placing a (second) Polaroid across the beam to the left of the 
PEM in Fig. 7, rendering the beam totally polarized. If we align this Polaroid along -45°, the 
polarized I signal here will not be affected, but an additional output signal will arise proportional 
to 10/2 -- note that only half of the I0 flux is transmitted. Thus the total signal with the Polaroid 
calibrator is: 

( ) ( ) ( )t2cos0A2J20IIc Ω+=S  

and the fractional polarization is found from the ratio S/Sc: 

c2
c
SS

SS
p

−
=          (20) 

 
This formula assumes a perfect calibrator Polaroid with no insertion loss for light 

polarized along its passing axis. For precision, a correction factor for the calibrator should be 
applied. Note that for small p, roughly p = (S/Sc) / 2. 

The above measurement applied to light linearly polarized along one direction, here at 
45° to the PEM axis. To characterize a beam with an arbitrary, unknown polarization direction 
we could make two measurements with two orientations of the PEM and analyzer- polarizer in 
Fig. 7, 45° apart, yielding effectively the two linear Stokes parameters Q and U (Sec. B). More 
directly this would give the two normalized parameters Q/I and U/I. 

Consider now how the set-up of Fig. 7 can sense circular polarization. In this case we 
take the incident beam to have a right-circular component 

( )jiE i
2

1 +=′′  for which 2i and 21 == ba . 

Putting this into (16) gives: 

( )tcos0Asin2121I Ω−=′′  

Again a standard expansion gives: 

( ) ( ) ( ) ( ) ...t3cos0A3Jtcos0A1J21I −Ω+Ω−=′′     (21) 
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Circular polarization gives a leading signal at the fundamental (first harmonic) PEM frequency. 
In (21), J1 has a maximum of about 0.58 at A0 = 1.85, slightly more than “quarter wave” 
operation in which case A0 = π/2 = 1.57. 

As with linear polarization, if in this case the beam is only partly circularly polarized we 
need a form of calibration to find the fractional polarization. Here this can be done by placing a 
"circular polarizer" in the incident beam. (This can be made as a sandwich of a linear polarizer 
and a λ/4 plate.) By comparing the signals analogous to S and Sc above (without and with the 
calibrator respectively), we can get the fractional circular polarization V/I. 
 
 
 
 
 
 
 
 

FIG. 9 
 
 
G. Birefringence and strain measurements. In the set-up of Fig. 9 we use crossed Polaroids 
oriented at ± 45°, and an intervening PEM. A birefringent sample is placed between the first 
Polaroid and the PEM, with its birefringence axes (fast/slow axes) along x,y . We have in mind 
here either naturally birefringent samples (some crystals), or mechanically strained optical parts, 
in which birefringence is induced by the piezo-optical effect. Let the birefringent phase shift 
between the x and y light components be B (in radians). A unit-amplitude field E after the first 
Polaroid is: 

( )jiE +=
2

1  

and the field E' after the PEM, modified by the sample and PEM phase shifts, is: 

( ) ( ) 22ABie2ABie 



 +−++=′ jiE      (22) 
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where again, A = A0 cos (Ωt) is the PEM retardation function. To get the output intensity I" we 
must project E' onto the -45° second-Polaroid passing axis, yielding: 

( ) ( ) ( )




 +−−+=′⋅=′′ 2ABie2ABie

2
1

2
1E Ej-i  

( )[ ]2ABsin i 2 +=  

and the output intensity seen by the detector is: 

( )[ ] ( )ABcos12AB2sin22EI +−=+=′′=′′  

( ) ( ) ( ) ( )Asin  Bsin   A cos B cos 1 +−=      (23) 

The cosine term here contains only even harmonics of the PEM frequency Ω, while the sine term 
is made of odd harmonics. Usually (though perhaps not always), the sample birefringence B is 
very small, B << 1. In this case (23) simplifies to: 

( ) ( ) ( )t cos 0Asin  BA cos-1Asin  BA cos1I Ω+=+−≅′′  

( ) ( ) ( )  ... t cos 0A 1J B 2 t cos 0A cos1 −Ω+Ω−= third and higher terms.  

Here the term cos (A0 cos Ωt) is merely the usual term in second and higher even harmonics that 
we have seen above in linear-polarization measurement; to first order it is not affected by the 
birefringent sample. The term proportional to B, the cos Ωt first- harmonic term, is the source of 
the signal used for synchronous detection of the birefringence -- using a lock-in detector, for 
example. As in circular polarimetry (Sec. F above), we would optimize J1 (A0) by setting the 
retardation amplitude A0 to about 1.85, roughly speaking "quarter wave" operation. 

Physically, the birefringent sample renders the linearly polarized light, after the first 
Polaroid, partly circularly polarized. This circular component then produces a first- harmonic 
signal in the detector just as in the normal detection of circular polarization - eq. (21) above. 

To get the actual value of the birefringent retardation B, in radians, a simple way is to 
replace the "sample" in Fig. 9 with a quarter-wave plate. In that case, B = π/2 and sin(B) = 1, in 
the exact equation (23). Then, for the case of small sample birefringence, 
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plate 4 with signal harm.1st 
sample with signal harm.1st B
λ

≅       (24) 

(This doesn't take into account "insertion losses" of the sample and/or quarter wave plate. Those 
should be found from transmittance measurements and a correction factor applied to (24) as 
needed.) 

Strain birefringence and strain amplitude. A uniaxial strain s -- a fractional compression 
or distension of a material along some direction -- results, in a transparent material, in a 
fractional birefringence given by: 

s
0n

nn
η=

− yx  

where n0 is the unstrained refractive index and η is a piezo-optical coefficient characteristic of 
the material. Both s and η here are dimensionless. Typically, η tends to be a fraction of order of 
unity, such as 0.2. We can find the strain from the birefringent retardation given by (24), by 
writing: 

( ) s nt2
ynxnt2B  0 ηλ

π=−
λ
π=       (25) 

where t is the sample thickness and λ is the wavelength. 
As a numerical example here, consider the parameters t = 1 cm, λ = 1 micron, n0 = 1.5, 

and η= 0.2. Then roughly, s ~ 10-4B. Since B as small as 10-3 radian can usually be detected with 
a PEM set-up, strains as small as 10-7 can be sensed. 

The actual sign of a measured birefringence must sometimes be found by an empirical 
test. In ordinary glasses, a squeezing stress produces a fast axis (smaller refractive index) along 
the squeeze direction. Thus a C-clamped glass block can be used as a sample to find the true 
signs of the B signals as in the apparatus of Fig. 9. Or, a commercial λ/4 plate with known fast 
axis can be used. 

H. Example of an unusual polarization technique: Shifting a light beam's frequency.  
Here I will deal with a special topic which is interesting in itself but which also 

provides good examples of polarized-light transformations through devices. Suppose we would 
like to shift the frequency of a light beam. This would normally be of interest with 
monochromatic laser light. Applications might include optical Doppler radar and related 
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technologies. At first glance such shifting might seem impossible -- except by reflecting the 
beam from a moving object. But consider the set-up in Fig. 10: 
 
 
 
 
 
 
 
 
 
 

FIG. 10 
 

Unpolarized light of angular frequency ω is passed through a Polaroid and λ/4 plate to produce 
circularly polarized light: 

( ) ti-e i ω+= jiE  

We pass this light through a Polaroid which is mechanically rotated at angular frequency Ω, 
producing a "rotating" linearly polarized field. To find the transmitted field E' we project E onto 
a rotating unit vector along the rotating Polaroid's passing axis: 

( ) ( )[ ]( ) ti-e tsin  t  cos tsin  t  cosi ωΩ+ΩΩ+Ω⋅+=′  j i j ijiE  

( )( ) ti-e tsin  t  cos tsin  i t  cos ωΩ+ΩΩ+Ω=  j i  

( ) ( )t-i-e tsin  t  cos ΩωΩ+Ω=  j i       (26) 

(Note: In this section, for economy I am throwing away 21 factors in unit vectors.)  
Next we pass this beam through a λ/4 plate with fast axis along x, which causes a 
(relative) optical phase shift of π/2 between the x and y components. Since exp(iπ/2) = i, 
effectively this gives: 

( ) ( )t-i-e tsin i t  cos ΩωΩ+Ω=′′  j iE  

Finally we pass this through a Polaroid passing along the 45° direction (i + j), yielding: 
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( ) ( ) ( )jiE +ΩωΩ+Ω=′′′ t-i-e tsin  i t  cos  

( ) ( )ji +Ω−ω−= t2ie       (27) 
 
The output beam with E''' here is a pure monochromatic beam with shifted angular frequency ω - 
2Ω. An upshifted frequency ω + 2Ω could of course be obtained by reversing the rotating 
Polaroid direction or the waveplate polarity. Physically, the rotating Polaroid "subtracts", or 
"adds", cycles per second, to the optical field oscillation. It is surprising that a pure frequency 
shift results here, without the generation of certain unwanted sidebands. 

 
 
 

 
 
 
 
 
 
 

FIG. 11 
 
A rotating wave plate, rather than a rotating polarizer, also can be used for frequency 

shifting. In Fig. 11 we show incident light which has first been rendered circular, i.e. 

( ) ti-e i ω+= jiE  

In Fig. 11, the first λ/4 plate rotates at angular frequency Ω, and has its fast and slow axes along 
the (rotating) directions x ' and y ' respectively. The x ', y ' axes are along (rotating) unit vectors i' 
= i cos Ωt + j sin Ωt and j' = - i sin Ωt + j cos Ωt. We project the field E onto i' and j', and 
impose a relative phase shift of π/2 between x ', y ' components caused by the wave plate. The 
phase shift amounts to multiplying the y' component by exp(iπ/2) = i. Thus the field beyond the 
rotating wave plate can be written: 

( ) ( )[ ]( )tsin t costsin  t cosi{ Ω+ΩΩ+Ω⋅+=′  j ij iji E  

( ) ( )[ ]( ) ti-et cos  t sin t costsin ii  } ωΩ+Ω−Ω+Ω−⋅++ j i j iji  



19

 

This boils down to: 

( ) ( )[ ] ( )t-i-e t cos -t sin tsin t cos ΩωΩΩ+Ω+Ω=′  j iE    (28) 

Next we add a stationary λ/4 plate (see Fig. 11), with axes along x , y . This again imposes a 
factor of exp(iπ/2) = i, on the y or j component in (28), yielding: 

( ) ( )[ ] ( )t-i-e t cos -t sin itsin  t  cos ΩωΩΩ+Ω+Ω=′′ jiE  

Finally a Polaroid at 45° then passes an output wave of amplitude: 

( ) 2E jiE +⋅′′=′′′  

( ) ( ) ( )[ ] ( )t-i-e t cos -t sin i  tsin  t  cos 21 ΩωΩΩ+Ω+Ω=  

( ) ( ) ( )( ) ( )t2iei121tietiietie 21 Ω−ω−−=Ω−ω−


 Ω−Ω=   (29) 

 
The factor (1-i) here amounts merely to an unimportant π/4 phase shift. The output wave given 
by (29) has a pure frequency shift of 2Ω, as with the rotating Polaroid arrangement. 

Physical picture of the frequency shift. The rotating λ/4 plate of Fig. 11, acting on the 
incident circularly polarized beam, produces a rotating linear polarization, described by a vector 
field 

( ) ti-e tsin  t  cos ωΩ+Ω=  j iE . 

It is useful here to think of a rapidly oscillating but slowly rotating E field, with Ω << ω. Now, 
such a rotating, linearly polarized field can be decomposed into two contrarotating, circularly 
polarized fields E+ and E_, with different frequencies. In Fig. 12, we show in (a) the two rotating 
components just prior to their cross-over which produces a net maximum field E. Suppose the 
field E_ to have a higher frequency than the field E+. At a slightly later time but (after many 
cycles of the rapid optical oscillation at angular frequency ω, we show in (b) an instant just 
before coincidence of the fields E_ and E+ produces 
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FIG. 12 
 

another maximum. Since the E_ field rotates somewhat faster, this maximum will occur at an 
angle rotated somewhat in the clockwise direction. Thus the net E field, composed of these 
contra-rotating components, will itself rotate -- in this case clockwise -- at the (low) angular 
frequency Ω. Formally we can decompose the rotating "linear" field E into contra-rotating 
circular components as follows: 

( ) ( ) ( ) ( ) ( ) ( )




 Ωω+Ω+ω+=ωΩ+Ω= t-i-e iti-e i21ti-e tsin  t  cos j - iji j iE  

If we extract one of these contrarotating circular components, using as in Fig. 11 
the "circular polarizer" combination of λ/4 wave plate plus Polaroid, we will obtain a pure 
upshifted or downshifted frequency component. 
 
 
 
 
 
 
 

     FIG. 13 
 
Frequency shifting with a PEM pair. The just-described schemes for frequency shifting 

require mechanically rotating components, and realistic shifts would be limited to a few hundred 
Hertz or so. Could PEMs or Pockels cells be used in this context, permitting much higher shifts 
and avoiding moving parts? The answer is yes, although there is a minor qualification in that the 
resulting shifted beam cannot be quite spectrally pure. 

Consider a PEM pair as in Fig. 13. The two units are mounted with their axes 45° 
separated; the first has its axis along x , the second along the 45°(x') axis. The PEMs 
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have identical modulation frequencies f = ω/2π, and are slaved together, with a 90° electrical 
phase shift imposed on one relative to the other. (With commercial PEMs of the Hinds type this 
would be accomplished by permitting one of them to self-oscillate; a slaving signal derived from 
that one would be used to drive the other unit, with a 90° phase shift interposed electronically.) 
Such a PEM pair, with a quadrature phase relationship between the excitations, acts essentially 
like a rotating wave plate: The fast axis is, for example, first along x, then along x ', then along y , 
and so on. The properties of the arrangement in Fig. 13 can be worked out using the methods of 
this monograph, as follows. 

Let the incident wave be circularly polarized, ( ) ti-e i ω+= jiE  (see eq. (3) above). (With 
an unpolarized or linearly polarized source beam, as from a laser, a λ/4 plate and a Polaroid or 
merely a λ/4 plate would be added at the left in Fig. 13, as needed.) The PEM retardation 
functions are written: 

( )tcos 0AA Ω=  and ( )tsin 0AB Ω=     (30) 

Here we assume the two amplitudes to be the same, but the amplitude is adjustable. The wave 
after the first PEM (dropping the exp(-iωt) factor) is: 

22Ai-ei2Aie1 


 += jiE       (31) 

To find the wave after the second PEM, we project E1 onto the ± 45° directions x' and y', using 
unit vectors ( ) 2jii +=′  and ( ) 2ji-j +=′ , as in the above sections; we impose modulated 
phase factors exp(±iB/2) on the x ' and y ' components respectively. After a modest amount of 
algebra we find that the wave can be written: 

( ) ( ) ( ) ( )







 π+π++π+π−= i E 42Bi-e 42Acos42Bie 42Acos2  

( ) ( ) ( ) ( ) ( )2242Bi-e 42Acos42Bie 42Acos







 π+π+−π+π−+ j  (32) 

(The reader may arrive at different but equivalent forms for this expression.) 
In Fig. 13, the λ/4 plate and the Polaroid combination act as a circular polarizer, with the 

eigenaxes of these components rotated 45°, as used also in the arrangements of Figs. 10 and 11. 
They serve to extract one circular component from the wave E2. In particular, we want to extract 
the "negative" circular component of type (i - ij), which rotates oppositely from the incident 
wave E = (i + ij). Let us do this directly in this case 
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by noting that the wave E2, as any complex vector, can be written as the sum of two circular 
components: 

( ) ( ) 2iS2iR2 j-ijiE ++=  

where R and S are to be determined. We want the S part, which will be just the output amplitude, 
i.e. E4 = S. Obviously: 

( ) 2i24ES jiE +== ⋅        (33) 

Performing the operation (33) and rearranging we find, after some work: 

( ) ( ) ( )[ ] ( ) ( )[ ]{ }2BAsini12BAsini1414E −+−+−−=    (34) 

Now we insert the PEM excitation functions A = A0 cos (Ωt) and B = A0 sin (Ωt), yielding: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }4tsin20Asini14tcos20Asini1414E π−Ω++π−Ω−−=  

(35) 

The two sine functions in (35) can be expanded in harmonic terms with Bessel- function 
coefficients. After some manipulation we obtain: 

( ) ( ) ( ) 



 +Ω+Ω= ...t3ie20A3Jtie20A1J2i4E    (36) 

If we re-insert the optical time factor exp(-iωt), we can write: 

( ) ( ) ( ) ( ) ( )




 +Ω−ω−+Ω−ω−= ...t3ie20A3Jtie20A1J2i4E  (37) 

This exhibits an output beam consisting entirely of downshifted components. The leading term 
has a maximum for 20A  = 1.85, or A0 = 2.62 (radians): and J1 (1.85) = 0.581. 
For this choice of A0, note that the second term in (37), the third-harmonic term, is proportional 
to J3 (1-85) = 0.10. Thus the ratio of intensities of these two terms, which are given by the 
squares, is about 34: 1. Higher harmonics (5Ω, etc.) are absolutely negligible. 

The spectral purity of the beam shifted to ω-Ω, with the maximum-transmission case 
20A  = 1.85, is therefore around 96%. Higher purity can be attained with a slight 
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loss of transmission, by reducing A0 somewhat. For 20A  = 1.0, the intensity ratio for the J1 
and J3 terms in (37) is about 500, and the spectral purity exceeds 99%. Note that the unshifted 
component, of optical frequency ω, is totally blocked, i.e. absent -- presuming, of course, that we 
have perfect λ/4 plates and linear polarizers. 

As with the rotating Polarizer of λ/4 plate, here we can induce an upshifted rather than a 
downshifted frequency merely by changing the sense of rotation -- in this case by using a - 90° 
phase shift, rather than + 90°, between the two PEM excitations. 

The reader may have noticed that the rotating polarizer and wave plate arrangements 
produce 2Ω frequency shifts, whereas the PEM pair produces a simple Ω shift. This merely 
reflects the fact that with a physically rotating λ/4 plate, the fast axis rotates geometrically twice 
as fast as in the case of the PEM pair, if the rotation and modulation frequencies are defined as in 
the above arrangements. 

PEM-pair frequency shifting: Jones-calculus analysis. 
As we said in Sec. C above, we have avoided the use of matrix methods in this treatise. 

But as an illustration of such methods for those readers familiar with matrix algebra, we will 
outline here the analysis of one example, that of frequency shifting with a PEM pair as just 
treated above. We use the Jones method. 

In the Jones notation, a vector field E = (ai + bj) exp(-iωt), or simply ai + bj omitting the 
optical time variation, is represented by a column matrix with elements a, b . The notation 
assumes a set of axes, such as x , y . An optical component then induces a transformation of E 
expressed by a 2x2 matrix -- the Jones matrix -- which acts on the (a ,b) column matrix, 
producing another column matrix (a ',b') by matrix multiplication. In Fig. 13, the first PEM is 
represented by a matrix, written in x , y coordinates, as: 











−= 2iAe0

02iAe
1M        (38) 

The second PEM in Fig. 13 is rotated 45°; its eigen axes are the axes x ', y '. To deal with this we 
first project any given vector (a,b) onto x', y 'coordinates, using a projection or rotation matrix; 
we apply the second PEM's transformation, analogous to (38), in the x ',y' frame; then project 
(rotate) the transformed components back to the x , y system. The resulting Jones matrix for 
PEM(2), in x , y coordinates, is: 
 



24

 







−















 −=
2121
2121 2iBe0

02iBe 
2121
2121

2M    (39) 

( ) ( )
( ) ( ) 



= 2Bcos2Bsin i

2Bsin i2Bcos       (40) 

The next item in the optical train of Fig. 13 is a λ/4 plate, which imposes a 90° optical phase shift 
between the x and y components. This has the Jones matrix: 




= i0
01

3M  

The last item is a Polaroid with its passing axis at a 45° angle. Written in x ', y ' coordinates this 
has a simple Jones matrix which merely "passes" any x ' component but nullifies any y ' 
component: 





00
01          (41) 

For this to act on a vector expressed in x , y components we must first transform the vector into 
x ', y ' components; then act on it in the x ', y ' system using (41). Thus the effect of the final 
Polaroid is expressed by the matrix: 






=





−




=
00

2121
2121
2121 00

01
4M     (42) 

Note that this last transformation "leaves us" in the x ',y ' system, rather than in the x ,y system. In 
this case that is all right since the only surviving vector component is along the x ' passing axis of 
the final Polaroid, and we are interested only in its intensity and time variation. The entire optical 
train of Fig. 13 is thus effectively represented by the matrix product: 

(M) = (M4)(M3)(M2)(MI)       (43) 
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In this case the input is, specifically, the circularly polarized beam E = i + ij. The output is a field 
linearly polarized along + 45°, of form E' = a'i'. In the Jones notation, 

( )( )( )( ) 


=


 ′
i
1 1M2M3M4M0

a       (44) 

By carrying out the matrix multiplications in (44), the reader will find that this yields a 
component a' which is essentially just the output field amplitude E4 of equation (36). 

1. A note on PEM-pair combinations: Beat-frequency pairs, etc. 
A variety of special modulation arrangements are possible with a pair of PEMs (or 

analogous modulators), used in tandem. In some cases the PEMs can be co-aligned; in others, as 
in the scheme in Fig. 13 above, they are oriented with a 45° separation around the light axis. The 
two PEMs can be driven at the same frequency -- with or without an electrical phase shift 
between them -- or they can run at different, normally incommensurate, frequencies. The 
properties of all such PEMs pairs can be worked out using the methods of this monograph, 
following a scheme essentially like that just used above for the PEM pair in the frequency-
shifting application. 

Such PEM pairs have various applications. Some examples: 
(a) Low-frequency, heterodyne detection, of polarized light. Sometimes the inherently 

high modulation frequencies of PEM devices are a hindrance. This is especially true for 
measurement of the polarization of infrared light; many sensitive detectors for the middle 
infrared, such as bolometers and cooled solid-state detectors, are slow, with high- frequency roll-
offs as low as a few hertz. In the simple "polarimeter" set-up of Fig. 7, the single PEM can be 
replaced by a PEM pair, with colinear axes and with different angular frequencies Ω1, and Ω2. If 
both PEMs are driven at λ/4 modulation, incident light linearly polarized along the 45° axis 
produces a heterodyne signal in the detector at angular frequency Ω1- Ω2. The beat frequency can 
in principle be very low, e.g. a few hertz, although for a reasonably stable beat frequency the 
stability of the PEM frequencies is a limitation. Since PEMs of the Hinds type are "free running" 
oscillators of frequencies determined by the mechanical self-resonance of the device, a reference 
signal for lock-in detection in this case would be gotten by mixing the two PEM reference 
signals electronically and extracting the difference-frequency signal. 



26

 

Circular polarization can be detected with such a beat-frequency PEM pair; a signal of 
angular frequency 2Ω1 - Ω2, proportional to the circularly polarized component in the incident 
light, is generated in the detector as in Fig. 7. By making Ω1 close to half Ω2, a low-frequency 
signal can be obtained in this case also. 

(b) Simultaneous detection of Q and U linear polarizations. As noted on page 13, second-
harmonic detection of linearly polarized light using the single-PEM set-up of Figure 7 gives only 
one of the two linear Stokes parameters, specifically the component polarized at 45° to the PEM 
axis. With that simple set-up, to measure the other component -- and thus to completely 
characterize the linear polarization -- we would have to rotate the PEM 
(and analyzer Polaroid) by 45°. However, we can do this without "moving parts" by 
using a PEM pair: The two PEMs are oriented 45° apart around the light axis, and have different 
frequencies f1 and f2. These could be comparable but well-separated frequencies, 
e.g. 50 kHz and 51 Khz. The analyzer Polaroid is placed with passing axis half way between the 
two PEM axes, i.e. 22.5° away from either PEM axis. It is easy to show that detector signals at 
the two frequencies f1 and f2, proportional to Q and U components respectively, are both 
generated. These can be read simultaneously in two lock-in detectors referenced separately to the 
two PEMS. The signals are half as strong as the simple single- PEM signal of Fig. 7. It can be 
shown that the PEMs do not interact; the Q and U signals each faithfully reflect the independent 
Q and U light components. 

(c) Modulated frequency shifting. In the set-up of Figure 13, for shifting the frequency of 
a light beam with a PEM pair, the analysis supposed the two PEMs to be driven coherently at the 
same frequency Ω, yielding a simple constant frequency shift ω → ω ± Ω. But if the PEM 
frequencies are different, say Ω1 = Ω + α/2 and Ω2 = Ω - α/2 where α is a small difference 
frequency, then it can be shown that the output light frequency oscillates back and forth between 
ω + Ω and ω - Ω, at the (low) angular beat frequency α. Such an FM modulation of a light beam 
could be used for example in a kind of "derivative spectroscopy", producing a detector signal 
proportional to the derivative dI/dλ of light with a spectrum I(λ). 
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J. A few references. 
The author is an astronomer, and I have used and developed PEM-based polarimeters in 

astronomical polarimetry. There is a large literature on polarized light instrumentation and 
application in fields ranging from chemistry (circular dichroism, fluorescence, etc.) to 
mineralogy (optical crystallography), with which I am not in touch. Much such work involves 
modulators such as PEMs or Pockels cells. 

Two general reference books are: 
W.A. Shurcliff, Polarized Light, Harvard University Press, 1962. 
D. Clarke and J.E. Grainger, Polarized Light and Optical Measurement, Pergamon Press, 

Oxford, 1971. 
From my own work I list the following papers: 
J.C. Kemp, "Piezo-optical birefringence modulators: New use for a long-known effect", 

J. Opt. Soc. Am., 59, 950 (1970). A basic description of the PEM. 
J.C. Kemp and M.S. Barbour, "A photoelastic-modulator polarimeter at Pine Mountain 

Observatory", Publ. Astron. Soc. Pac., 93, 521(1981). Describes mainly a linear polarimeter with 
associated instrumentation. 

J.C. Kemp, "Photelastic-modulator polarimeters in astronomy", Proc. Soc. Photo- Opt. 
Instr. Engrs. (SPIE), 307, 83 (1981). Has a general discussion of types of PEMs. 

J.C. Kemp, G.D. Henson, C.T. Steiner, I.S. Beardsley, and E.R. Powell, "The optical 
polarization of the Sun measured at a sensitivity of parts in ten million", Nature, 326, 270 (1987). 
Describes some state-of-the-art measurements using PEM instruments; includes description of a 
heterodyne (double PEM) system for a special purpose. 
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