
 

Hinds Instruments, Inc. / 7245 NE Evergreen Pkwy / Hillsboro, OR 97124 
P: 503.690.2000 / F: 503.690.3000 / www.hindsinstruments.com 

Intuitive interpretation of Mueller matrices of transmission 
 

John Freudenthal 
Hinds Instruments, Inc. 

 
Abstract 
 
Polarization metrology has grown to embrace ever more complicated measurement parameters. From 
amplitude and phase difference to NSC data acquisition, ellipsometry and polarimetry now commonly 
measure the complete Mueller matrix. This adaption allows for the simultaneous measurement of a 
large number of optical parameters at the expense of complex interpretation. Herein, we attempt to 
break down the Mueller matrix into sections and offer intuitive viewpoint of what each element of the 
four by four Mueller matrix means. 
 
The Mueller matrix 
 
The Mueller matrix is a real valued four by four matrix that expresses the change in polarization of 
light from one state to another. Usually, this change is imparted from reflection or transmission of a 
sample but Mueller matrices are equally applicable to any change in polarization. The Mueller matrix 
acts upon the incoming Stokes vector expression of the polarization. The Stokes vector is a real valued 
four element vector. 
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In the above [Eq1], the Stokes vector which consists of measurements for the intensity of light, I, the 
intensity of light polarized at 0°/90°, Q, the intensity of light polarized at 45°/135°, U, and the intensity 
of left/right circularly polarized light, V. The input Stokes vector is transformed into the output Stokes 
vector via the Mueller matrix. As the Mueller matrix acts upon a four element vector to yield a four 
element vector, the Mueller matrix must be a four by four element matrix. 
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As shown in [Eq2], the full Mueller matrix expression allows the user to interpret the meaning of a few 
Mueller matrix elements by examination. For instance, the M00 element scales the input intensity to the 
output intensity so this element can be interpreted as the simple transmittance. The M01 element scales 
the linear polarization at 0°/90° to the output intensity. Hence, M01 can be interpreted as the linear 
extinction at 0°/90°. Extinction here means the ratio of input to output light intensity. The terminology 
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for polarization could use some clarification as a number of similar terms exist; 
transmission/reflectance, absorbance, extinction, etc. 
 
Transmission mean the ratio of light from input to output. Absorption is a measurement of linear 
attenuation in transmission times the distance of propagation. So here, transmittance is the extrinsic 
measurement of the ratio of light intensity. While absorption attempts to measure the intrinsic property 
of linear attenuation of a material in transmission. 
 
Instrinsic property Extrinsic measurable 
Linear birefringence (LB) Linear retardance (LR) 
Circular birefringence (CB) Circular retardance (CR) 
Linear dichroism (LD) Linear extinction (LE) 
Circular dichroism (CD) Circular extinction (CE) 
Absorption (A) Transmission (T) 

 
In each ideal case above, the intrinsic property can be related to the extrinsic property by integrating 
over the distance of propagation through the material. 
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When the sample under measurement exhibits only a single optical property from the table above, the 
Mueller matrix can be interpreted from [FIG1]. When a sample exhibits more than one optical 
property, the elements of the Mueller matrix mix together and complicate interpretation. In general, the 
type of samples under examination can be organized by the sample’s symmetry; isotropic, anisotropic, 
chiral and bi-anisotropic. 
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Mueller matrix of isotropic materials 
 
The most basic material is a simple isotropic material. In these materials, there is only absorbance. As 
such, only the diagonal of the Mueller matrix is occupied. 
 

 
In general, most Mueller matrix polarimeters will normalize to M00. As such, the Mueller matrix will 
measure as unity, one, along the diagonal. The isotropic Mueller matrix serves as a starting point to 
understand more complex samples; anisotropic and chiral samples. 
 
Anisotropic Mueller matrices  
 
Anisotropic materials poses different refractive indices in different directions. The refractive index is 
direction dependent and shows two or three distinct orthogonal refractive index values. Most 
anisotropic samples do not exhibit circular retardance, CR, and circular extinction, CE, due to space 
group restrictions. For these more complex samples, the values and signs of the diagonal elements 
depend heavily on which optical properties are expressed by a material. So for the sake of intuitive 
interpretation, it is suggested to largely ignore the diagonal values and focus on the signs and 
relationships of the off diagonal elements. 
 

 
 
Ignoring the diagonal elements allows for the Mueller matrix to be split into two segments; 
extinction/dichroism and retardance/birefringence. The first row and first column contain the majority 
of the information about differential extinction. For a simple homogeneous material, the signs and 
magnitude should match across the diagonal for M01 and M10 as well as M02 and M20. Retardance falls 
into the 3x3 lower right cube. Here, the signs of M13 and M31 should be opposite as are the signs of M23 
and M32. 
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Anisotropic samples will poses large values for the Mueller matrix elements M12 and M21. The values 
of these elements will have the same sign and magnitude as they are not due to circular retardance but 
the interactions of linear retardance and/or linear extinction. To distinguish between the effects of 
linear retardance and circular retardance on the Mueller matrix elements M12 and M21, the circular 
retardance can be expressed in the following equation. 
 

𝐶𝐶𝐶𝐶 ∼
𝑀𝑀12 − 𝑀𝑀21

2
 

 
Most anisotropic samples will exhibit large linear retardance which will swamp and obscure any 
circular retardance. In addition, due to space group restrictions most anisotropic materials can not 
possess circular retardance. Only isotropic chiral samples will exhibit measurable circular retardance or 
circular dichroism. 
 
Isotropic chiral Mueller matrices 
 
Isotropic chiral materials are a classification of materials with a refractive index that is the same in all 
directions, but the material interacts deferentially with left and right circularly polarized light. When 
the sample is chiral isotropic, the resulting Mueller matrix will exhibit non-zero anti-diagonal elements. 
 

 
The elements M03 and M30 will have the same sign if the sample poses significant circular extinction. 
As noted above, circular retardance will be highlighted as the difference in the M12 and M21 elements. 
These two elements will show the opposite signs. 
 
Bianisotropic Mueller matrices 
 
Bianisotropic materials are the most complex classification of optical materials. These materials exhibit 
both linear and circular properties. For the most part, these materials will have very low symmetry such 
as the triclinic crystal system. 
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For these materials, all the analysis above applies equally well. The orientation of the material’s optical 
axes have a drastic effect on the measurable circular retardance. Due to the relative magnitudes of 
linear and circular retardance, the measurable circular retardance is generally swamped by linear 
retardance. The total retardance scales both the measurable linear and circular retardance by the sinc 
function. 
 

𝑇𝑇𝐶𝐶 = �𝐿𝐿𝐿𝐿2 + 𝐿𝐿𝐿𝐿′2 + 𝐶𝐶𝐿𝐿2 
 

𝐶𝐶𝐿𝐿𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒 ∼ 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶(𝑇𝑇𝐶𝐶) 
 

𝐿𝐿𝐿𝐿𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑒𝑒 ∼ 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶(𝑇𝑇𝐶𝐶) 
 
Since linear retardance is usually orders of magnitude larger than circular retardance, circular 
retardance is generally only measurable in directions where the linear retardance is near zero. So 
measuring the circular retardance of an ansitropic sample is best done by measuring down the optical 
axes of an anisotropic material. 
 
Analytical reduction of Mueller matrices to optical properties 
 
Up to this point, the interaction between different optical properties was largely neglected in order to 
offer a simple analysis. With this simple analysis, the signs and relative relationship between Mueller 
matrix elements can be understood. For a precise analysis, the experimentally determined Mueller 
matrix can be assumed to arise from an arbitrarily complex homogeneous material. To analyze the 
optical properties, the Mueller matrix must be reduced to its basic six optical properties. This is most 
simply accomplished by applying the matrix logarithm. 
 

𝑚𝑚 = −𝑙𝑙𝑙𝑙(𝑀𝑀) 
 
The numerical or analytical routines for a matrix logarithm are beyond the scope of this document. The 
technique separates the effects of each optical property, but does not take into account the phase order. 
As such, the matrix logarithm can reduce a Mueller matrix into an easily interpreted matrix containing 
the retardance and extinction information. 
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𝑚𝑚 = �
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Where α is the isotropic absorption. β, γ, and ξ are the linear dichroism at 0⁰/90⁰, linear dichroism at 
45⁰/135⁰, and circular dichroism respectively. μ, ν, and η are the linear birefringence at 0⁰/90⁰, 
linear birefringence at 45⁰/135⁰, and circular birefringence respectively. 
 
[R. M. A. AZZAM ‘Propagation of partially polarized light through anisotropic media with or without 
depolarization: A differential 4x4 matrix calculus’ in: Journal of the Optical Society of America 68.12 
(Dec. 1978), pp. 1756 –1767 DOI: 10.1364/JOSA.68.001756] 
 
The differential Mueller matrix, m, can be experimentally determined by using numerical routines. The 
results can then be directly interpreted or converted to more familiar units. With these tools, a user can 
at a glance, interpret an experimentally determined Mueller matrix and gain insight into the optical 
properties of the material under examination. 


